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Abstract: Thermal configurational data on neat liquids are used to obtain the work of formation of hard spherical cavities 
of atomic size in six molecular solvents: n-hexane, n-dodecane, n-undecyl alcohol, chloroform, carbon tetrachloride, and water. 
These results are used to test a recent suggestion that the differences between nonaqueous solvents and liquid water in solvation 
of inert gases are not principally due to the hydrogen-bonded structure of liquid water but rather to the comparatively small 
size of the water molecule. The frequencies of occurrence of cavities in liquid water can be meaningfully distinguished from 
those in the organic solvents. Liquid water has a larger fractional free volume, but that free volume is distributed in smaller 
packets. With respect to cavity work, water is compared to a solvent of the same molecular density and composed of hard 
spheres of the same size as the water molecule. That comparison indicates that the hard-sphere liquid finds more ways to 
configure its free volume in order to accommodate an atomic solute of substantial size and, thus, would be a more favorable 
solvent for inert gases. The scaled particle model of inert gas solubility in liquid water predicts cavity works 20% below the 
numerical data for TIP4P water at 300 K and 1.0 g/cm3 for cavity radii near 2.0 A. It is argued that the sign of this difference 
is just the sign that ought to be expected and that the magnitude of this difference measures structural differences between 
water and the directly comparable hard-sphere liquid. In conjunction with previous data, these results indicate that atomic 
sized cavities should be considered submacroscopic. 

In recent years, applications of the scaled particle model1'2 to 
studies of solubilities of inert gases in molecular liquids3,4 have 
led to a suggestion that the characteristic differences between 
nonaqueous solvents and liquid water are not due to the structure 
of liquid water. Instead, it is suggested that they are due prin
cipally to the comparatively small size of the water molecule.4 This 
physical picture has not been directly tested even though hydro
phobic phenomena are of broad interest in colloid and materials 
sciences as well as in biophysical chemistry. Moreover, this is 
a picture that should be readily clarified by persistence in accu
mulating the relevant liquid structural data and attention to simple, 
basic issues of the theory of liquids. For these reasons, we have 
undertaken a study, utilizing computer experiment, of a basic 
feature of solubility of inert gases in molecular liquids: the 
likelihood of finding, at an arbitrary point in the solvent, an atomic 
sized cavity that could accommodate the solute. 

The cavity data of the type analyzed here could, with additional 
work, yield predictions of the solubilities of simple atomic species 
in molecular solvents. This has not been done here because these 
data are of more immediate interest as signatures of the solvent 
structure which influence those solubilities. The solubility of inert 
gases is characteristically different in water than in common 
organic solvents. Therefore, the likelihood of observing a natural 
occurrence of a cavity of atomic dimensions might be expected 
to be characteristically different in liquid water than in nonas-
sociated liquids. Despite this reasonable expectation, it has not 
been known with any confidence whether these signatures could 
be distinguished in any meaningful way using thermal configu
rational data obtained by computer simulation techniques with 
current intermolecular force models. 

Since these data are simple and reflect a property of the solvent 
alone, they are of general use in comparing different solvents. For 
this reason, too, these data provide a basis for clarifying general 
conceptual pictures of hydrophobic effects, perhaps more effec
tively than specific computational results on particular solute/ 
solvent systems. 

The scaled particle model describes the cavities that might occur 
in a liquid by assigning a van der Waals or excluded volume to 
the solvent molecules and then considering the volume accessible 
to a spherical solute. The atomic (or extended atom) constituents 
of the fluid might be used to define the excluded volume. In typical 
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applications of the scaled particle model, however, the excluded 
volume is treated by modeling the solvent molecules as impene
trable spheres. The predictions of the scaled particle model are 
sensitive to the value of the radii of those spherical exclusion 
volumes. The value assigned to the radius of the water molecule 
usually differs by nearly a factor of 2 from values assigned to 
organic solvents such as carbon tetrachloride. It has been noted 
that this difference is the dominant factor in controlling the 
prediction of the solubility of inert gases in water relative to organic 
liquids.3,4 It was this observation that led to the suggestion that 
behavior characteristic of hydrophobic solvation is due principally 
to the small size of the water molecule and only indirectly to the 
hydrogen-bonded structure of liquid water.4 

More accurately, the scaled particle model indicates that the 
frequency of occurrence of atomic sized cavities is low in liquid 
water compared to common organic solvents. Within the scaled 
particle model this low frequency of occurrence of cavities of 
substantial size follows from the assignment of a small charac
teristic length for the solvent structure, the radius of a water 
molecule. Consequently, the available interstitial holes are quite 
small. 

Such an argument can be considered in terms of the detailed 
molecular structures that are encountered in typical solvents. In 
fact, the scaled particle model incorporates only a meager amount 
of the molecular structure that might differentiate water from 
other solvents. This point has been emphasized previously.2 The 
radii assigned to molecules as different in shape as water, carbon 
tetrachloride, and n-hexane are not directly indicative of the local 
molecular structure of these liquids. Because a good deal is known 
about the local structure of carbon tetrachloride,5"10 this liquid 
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can provide a simple example. At the densities of interest, 
neighboring CCl4 molecules interlock appreciably. This inter
locking is principally due to the chemical structure of the CCl4 
molecule and van der Waals contacts associated with the chlorine 
atoms. This suggests that the Cl van der Waals radii would give 
a more accurate indication of the size of interstitial cavities that 
might exist in liquid carbon tetrachloride. In this respect, it is 
not obvious that the molecules can be viewed accurately as im
penetrable spheres with a van der Waals radius determined by 
typical near-neighbor C-C distances. 

Similar considerations apply to the molecular structure of liquid 
water. Efficient packing of small molecules such as H2O molecules 
at a liquid density will leave rather small interstitial spaces. 
However, water is often thought of as a liquid of open architecture. 
For example, a solvent atom or molecule in a generic simple liquid 
near its triple point typically has between 9 to 12 near-neighbors." 
In contrast, a H2O molecule in water near its triple point has fewer 
near neighbors, between 3 and 6, and these neighbors are more 
precisely located. This architectural openness is often emphasized 
in discussions of the peculiar increase in density of liquid water 
as it is heated at constant pressure just above its normal melting 
point. Again, the fidelity of an interpretation of solubility data 
on the basis of packing of spheres is not obvious.12 

The research reported here has the objective of clarifying these 
views. During recent years, we have accumulated a data base 
of thermally representative configurations for an interesting range 
of molecular liquids. Although these data were obtained originally 
for other purposes,13"16 they permit several of the comparisons 
that should be helpful in gaining a more accurate picture of 
hydrophobic solvation. Water as well as polar and nonpolar 
organic liquids are represented. The nonaqueous solvents include 
liquids of rigid and nonrigid molecules. Results for two different 
models of liquid water are available and in one of those cases for 
two different temperatures. 

A simple statement of the theory that is the basis of the present 
analysis follows in the next section. We then note some of the 
methodological details associated with the analysis and present 
our results. These results are then discussed and compared with 
previous work. Finally, we present the conclusions that may be 
drawn from this work. 

Theory 
Progress in a theoretical understanding of hydrophobic effects 

has been limited by lack of physical, molecular-level hypotheses 
that are also a natural part of the broader theory of liquids. 
Physical suggestions without this latter quality are not very helpful 
in distinguishing water from other liquids. For this reason, it is 
important to present here a discussion of the theoretical ideas to 
be tested below. In fact, the analysis in subsequent sections of 
this paper can be understood on the basis of a simple, general 
theoretical development. This discussion then serves the additional 
purpose of defining the quantities to be analyzed. 

The discussion by Stillinger2 may be consulted for a somewhat 
different perspective which, however, is closely related to the 
present ideas. The central result of this development is a statistical 
formula that provides the chemical potential nR of a hard-sphere 

(11) See, for example: Hansen, J. P.; McDonald, I. R. Theory of Simple 
Liquids; 2nd ed.; Academic Press: New York, 1986. 
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H.C.J. Phys. Chem. 1984, 88, 6548. 
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solute of radius R dissolved in the solvent 

»R/kBT=\n(pRAR
3)-\n((VR)/V) (1) 

where VR is the volume accessible to the observation particle, a 
hard sphere of radius R, and V is the total volume. Here T is 
the temperature, kB is Boltzmann's constant, pR is the solute 
density, and \R is the thermal deBroglie wavelength. The brackets 
in eq 1 indicate the ensemble average over configurations of the 
solvent unaffected by the observation particle. This result can 
be set in a much more general context by appealing to the potential 
distribution theorem.17'8 However, we will not need that gen
erality here. The ratio 

p(R) = (VR)/V (2) 

is the fractional free volume. It takes on values between 0 and 
1. Because it describes the likelihood of a successful insertion of 
a hard sphere of radius R into the liquid at a randomly chosen 
point, we will refer to p(R) as the insertion probability. 

Now consider in more detail the case in which the van der 
Waals volume of the solvent is modeled by assigning an exclusion 
sphere to each of the interaction sites that describe the solvent 
molecules. The insertion probability can then be expressed as 

P(R) = <ri|l -r,(R + * „ - | r - r „ | ) | > (3) 

The product is over all exclusion spheres, aj identifying they'th 
exclusion sphere of type a which is located at raj. The radius 
assigned to exclusion spheres of type a is Ra. Here ri(z), the 
Heaviside function, is defined by 

i . «>o} (4) 

For a particular configuration and a particular point r, the product 
is 1 if no overlaps occur and 0 otherwise. Therefore, eq 3 faithfully 
evaluates the desired quantity. 

If the product of eq 3 is multiplied out and all terms with the 
same number of factors of r)(z) are collected, the Mayer-Montroll 
expansion for the present problem is obtained." Succeeding terms 
in this expansion correspond to the possibility of the solute 
overlapping successively larger numbers of solvent-exclusion 
spheres. This is an essential ingredient of the scaled particle theory 
for the equation of state of the hard-sphere fluid.20 Note, in 
particular, that the observation point, located at some definite 
position, can penetrate only a finite number of exclusion spheres. 
Thus, this expansion truncates at a finite number of terms. An 
important example is the case in which the exclusion spheres do 
not overlap each other. The solute can occupy only one solvent 
sphere at a time and the expansion terminates at the second term. 

P(R) = 1 - L Cv(R + Ra' Ir- r'|)pa(r') dr' 

= 1 - ^UR + Ra?Pa (5) 
-> a 

The density of exclusion spheres of type a is pa. This result for 
the fractional free volume is valid when R + Ra is sufficiently 
small that the excluded volume is a disjoint set of spherical 
volumes. This can be achieved by allowing R to decrease suf
ficiently and, in particular, to take on negative values in a restricted 
range which ensures that the right side of eq 5 is not greater than 
unity. This result is an important ingredient in scaled particle 
theories, both the original scaled particle development for the 
hard-sphere fluid20 and the scaled particle model for the solubility 

(17) Widom, B. J. Chem. Phys. 1963, 39, 2808. Widom, B. J. Stat. Phys. 
1978, 19, 563. Widom, B. J. Phys. Chem. 1983, 86, 869. 
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G. In Studies in Statistical Mechanics; Shlesinger, M. F., Weiss, G. H., Eds.; 
North-Holland: Amsterdam, 1985; Vol. XII, Chapter 6. 

(20) Reiss, H. Adv. Chem. Phys. 1985, 9, 1. Reiss, H. In Statistical 
Mechanics and Statistical Methods; Landman, U., Ed.; Plenum: New York, 
1977. 
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Table I 
system 

water (TIP4P) 
water (TIP4P) 
water (MCY) 
CCl4 

CHCl3 

/i-hexane 
n-dodecane 
/i-undecyl 
alcohol 

calcn 

MD 
MD 
MC 
MC 
MC 
MD 
MD 

MD 

molecules 

343 
343 
343 
125 
125 
128 
64 

64 

T, K 

300 
360 
300 
300 
300 
320 
320 

320 

length 

lOOps 
100 ps 
100 Kpass 
97 Kpass 
60 Kpass 

600 ps 
400 ps 

350 ps 

configns 

200 
200 
200 
485 
300 

1200 
800 

700 

gridpoints 

42875 
42 875 
42 875 
15 625 
21875 
27 000 
27 000 

27 000 

of inert gases in liquid water.12 More generally, p(R = 0) is the 
fractional volume accessible to a point solute and we will refer 
to 1 - p(R = 0) as the packing fraction. 

In going beyond eq 5, the next term in the expansion of eq 3 
can be evaluated in terms of the radial distribution function giy(r) 
of pairs of exclusion spheres (£,x) in the undisturbed solvent. We 
will not require the general result below because we will be 
particularly interested in the case where the solvent contains 
exclusion spheres of just one type. Therefore, we give only that 
special result 

P(R) = 1 - YPs(R + *s) 3 + 

r*gss(r)h(r,R + Rs) dr (6) 
o 

Here Rs is the radius of that single type of exclusion sphere that 
is present at the density ps. h(r,\) is the function 

^ , A ) = | y | A 3 -(/-/2X) + -(/"/2X)3 
(7) 

Equation 6 is valid when R is sufficiently small that the solute 
can penetrate no more than two solvent-exclusion spheres si
multaneously. 

Discussion of one further aspect of empirical scaled particle 
models for the aqueous solution applications is required for the 
analysis that follows. The variation ofp(R) with R asymptotically 
for large R can be anticipated on physical grounds. The variation 
with R of the standard chemical potential, defined by 

AfiR = HR ~ kBT In (pRAR*) 
= -kBT In p(R) (8) 

should describe the quasistatic work expended in altering the radius 
of the solute. In the aqueous solution applications, it has been 
customary to let the solvent van der Waals volume be associated 
with exclusion spheres centered on the oxygen atoms only. Thus 
the solvent radius R5 can be identified with the oxygen atom, Rs 

= R0. Using the notation, X = R + Rs, we can expect that2 

A ^ ~ y M 3 + 4,T7X
2 1 - Y (9) 

Here p is the pressure of the liquid. The parameters 7 and 5 are 
considered to be conventional surface thermodynamic properties 
of the water liquid-vapor interface, the surface tension, and the 
distance between the equimolar surface and the surface of ten
sion.21 This identification should not be considered rigorous in 
this context, but it is reasonable for many solvents under standard 
conditions and, in particular, for water near liquid-vapor phase 
coexistence at low pressure.2 The original application of scale 
particle methods to aqueous solutions required that the asymptotic 
result of eq 9 join smoothly at R = 0 to the low R behavior 
described by eq 5. The requirement that AnR be continuous and 
smooth at R = 0 constitutes two additional conditions on the 
coefficients of this asymptotic form. If the pressure p is supplied 
from experiment, those conditions determine y and 5 and the 
theory then predicts the limiting low-pressure solubilities of a hard 
sphere in liquid water. 

(21) See, for example: Rowlinson, J. S.; Widom, B. Molecular Theory of 
Capillarity; Clarendon Press: Oxford, 1982; Section 2.4. 

Methods 
The insertion probabilities p(R) were calculated for six different li

quids: H-hexane, /i-dodecane, n-undecyl alcohol, chloroform, carbon 
tetrachloride, and water. Table I gives a summary of the configurational 
data. These configurations were obtained either by Newtonian molecular 
dynamics calculations or Metropolis Monte Carlo methods. The calcu
lations on water were performed for the TIP4P22 and the MCY23 model. 
In these cases the intermolecular pair interactions were smoothly trun
cated as is indicated in refs 15 and 16. The interaction potential energy 
models for n-hexane, /i-dodecane, and n-undecyl alcohol were those de
veloped by Jorgensen.24 Again, the intermolecular interactions were 
smoothly truncated with a cubic spline which brought the united atom 
site—site interactions smoothly to zero at the outer cutoff distance of 12.0 
A. The inner-spline knot was located at 11.5 A. For carbon tetrachloride 
a model potential function thoroughly investigated in a Monte Carlo 
study of solvation of nucleic acid bases was used.'4,25 This model 
function was extended to include H-Cl and H-C atom interactions and 
employed in a Monte Carlo study of liquid chloroform.26 All calculations 
used a cubic simulation volume, and periodic boundary conditions were 
applied in all three spatial directions. In all cases except for TIP4P water 
at 360 K, the calculations were carried out at the experimental normal 
densities for the temperature in question. For that exception the density 
was 1.0 g/cm3. 

To obtain the insertion probabilities for a particular system a grid of 
test points evenly spaced in the simulation cell was created. The number 
of gridpoints for each system is given in Table I. Then for each config
uration and each gridpoint, the nearest exclusion sphere of each type was 
found. This permitted the determination of the radius of the largest 
cavity that could be inserted at the gridpoint in question for that par
ticular configuration and for each set of solvent radii. The radii of the 
largest cavities that could be inserted were binned and averaged over both 
gridpoints and sampled configurations. This produces the probability 
density of the radius of the largest cavity that could be successfully 
inserted; that is, the probability density p„(R) with the interpretation that 
Pn(R)AR is the probability that the radius of the largest cavity which 
could be inserted is within AR about R. The probability for insertion of 
a cavity with a particular radius, R, is equal to the likelihood that the 
radius considered is less than the radius of the largest cavity that can be 
inserted. Thus, 

P(R) = S^Pm(R 0 d*' (10) 

This relation is a slight generalization of a central ingredient of the scaled 
particle theories,20 and it will arise again in the discussion below. It is 
worth noting here that the procedure built upon eq 10 yields a range of 
data for each gridpoint and each configuration. It is, therefore, more 
efficient than hit-or-miss trial insertion of a hard-sphere solute of fixed 
radius.27 

(22) Jorgensen, W. L.; Chandrasekhar, J.; Madura, J. D.; Impey, R. W.; 
Klein, M. L. J. Chem. Phys. 1979, 79, 926. 

(23) Matsuoka, O.; Clementi, E.; Yoshimine, M. J. Chem. Phys. 1976, 64, 
1351. 

(24) Jorgensen, W. L. J. Am. Chem. Soc. 1981, 103, 341. 
(25) Pohorille, A.; Burt, S. K. Unpublished Monte Carlo studies of liquid 

CCl4. In addition to ref 14, see also: Pohorille, A.; Pratt, L. R.; Burt, S. K.; 
MacElroy, R. D. J. Biomol. Struct. Dyn. 1984, /, 1257. 

(26) Pohorille, A.; Burt, S. K. Unpublished Monte Carlo studies of liquid 
CHCl3. In units of the magnitude of the electron charge, the partial charges 
used for the carbon (C), chlorine (Cl), and hydrogen (H) atoms were re
spectively: <jc = 0.2829, ijcl = -0.1173, and qH = 0.069. 

(27) This distinction is analogous to the distinction between "hit-or-miss" 
and "crude" Monte Carlo discussed in MONTE CARLO METHODS, by 
Hammersley and D. C. Handscomb (Wiley: New York, 1964). Section 5.2. 
"Hit-or-miss" Monte Carlo is more crude than "crude". 

(28) Hsu, C. S.; Chandler, D. MoI. Phys. 1979, 37, 299. 
(29) Bohm, H. J.; Ahlrichs, R. MoI. Phys. 1985, 54, 1261. 
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Figure 1. Variation of insertion probability, p(R), and dimensionless 
cavity work, &nR/kBT, with the van der Waals radius of chlorine for 
liquid carbon tetrachloride with Rc - 1.54 A. Top panel: RC\ = 1.55, 
1.65, 1.75, 1.85 A from top curve to bottom curve. Since A»R/kBT = 
-In p{R) this order is reversed on the bottom panel. 

Several sets of radii were considered. Assignment of van der Waals 
radii for many atom types is quite conventional. It may be less so for 
the chlorine atoms involved in the present study, so we discuss first how 
these radii were chosen for liquid CCI4. Intermolecular Cl-Cl near-
neighbors are typically separated by 3.8 A, but the distance of closest 
approach for Cl-Cl pairs is about 3.4 to 3.5 A.5"10 The variation of our 
cavity results with variation of Ra is shown in Figure 1. (These results 
also indicate that cavities nearly as large as the atoms which constitute 
the liquid occur with appreciable probability, i.e., nearly 1%.) In view 
of these results, we adopted the value Ra = 1.70 A for the van der Waals 
radius of the chlorine atom in the CCl4 molecule. 

The van der Waals radius assigned to the carbon atom is less impor
tant. We have, somewhat arbitrarily, chosen Rc = 1.54 A, but calcu
lations with reasonable values of Ra and Rc = 0.0 A produced negligible 
changes. The radii for the C and Cl atoms in CCl4 are also reasonable 
for those atoms in the CHCl3 molecule.28W For that H atom, a value 
near RH = 1.0 A is appropriate. We investigated RH = 0.95 and 1.20 
A and noted that the insertion probabilities are negligibly different for 
these two cases. The results for chloroform shown below used the larger 
value. It has become customary to treat the H2O molecule also as a 
single spherical exclusion volume with radius 1.35 A centered on the 
oxygen atom; this custom was adopted in the results below. The methyl 
and methylene groups of n-dodecane and n-undecyl alcohol were all 
treated as united atom spherical exclusion volumes. The common and 
reasonable value of 1.85 A for the van der Waals radii of the methyl and 
methylene groups was adopted. The hydroxyl group was also treated as 
a spherical extended atom centered on the oxygen atom with a van der 
Waals radius of 1.35 A. 

We investigated the variations of the results with changes of all the 
van der Waals radii within a range of ±0.2 A. The results of Figure 1 
are typical of the smooth gradation of results found when these radii are 
changed slightly near the values discussed. 

Data on cavities with radii considerably larger than 2.0 A were rou
tinely collected. Our experience with the approach outlined above sug-

(30) Postma, J. P.; Berendsen, H. J. C; Haak, J. R. Faraday Symp. Chem. 
Soc. 1982, 17, 55. 
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Figure 2. Cavity insertion probabilities for small-radius cavities in seven 
simulated molecular liquids. The plotting symbols identify the same 
liquids in each of Figures 2, 3, and 6: (+) chloroform; (•) MCY water; 
(---) carbon tetrachloride; (D) TIP4P water; (•) n-undecyl alcohol; (X) 
n-dodecane; and (O) /i-hexane. 
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Figure 3. Dimensionless cavity work, AnR/kBT, as a function of cavity 
radius R in seven simulated molecular liquids. 

gests that determination of cavity works for cavities as large as 2.3 A in 
liquid water would present no special difficulties. For the hydrocarbon 
liquids considered here, we feel that cavity works for cavities nearly as 
large as 3.0 A could be reliably obtained. Much of our discussion below 
is limited to cavities of considerably smaller radii so that we can inspect 
and compare all the data over a common range of radii for which sta
tistical uncertainties are negligible. The method adopted here takes 
advantage of the homogeneity of the neat liquid and collects data 
throughout the sample volume. This method is, therefore, very much 
more efficient and precise for the present purposes than the study of the 
solvation of a solute actually present in the solvent. 

Results 
Figures 2 and 3 give a composite impression of all of our results. 

Figure 2 shows the insertion probability p(R) for all the liquids 
considered. These results emphasize the differences between these 
liquids for small cavity sizes. Figure 3 displays the cavity work 
AnR/kBT = -In p(R), which more clearly reveals the differences 
in the insertion probabilities for the larger cavity sizes where p(R) 
is small. 

The configurational data used for the different liquids con
sidered correspond to slightly different temperatures. We an
ticipate that modest changes in the temperature (at constant 
density) of liquids considered here would engender changes in 
cavity insertion probabilities that are secondary to the changes 
seen between the different liquids studied. Therefore, we intend 
to consider these results principally on the basis of the differing 
molecular structure of these liquids. However, some checking of 
the size of temperature effects is warranted. Furthermore, tem
perature effects are often given particular attention in defining 
hydrophobic behavior. In order to check the size of these tem
perature effects, we used the data on cavity formation in TIP4P 
water at temperatures of 300 and 360 K at the same density, 1.0 
g/cm3. Figure 4 shows the changes 

A[AtiR/kBT] = [AnR/kBT]T=U0K- [&nR/kBT}T=}00K. 

observed as well as the ratio of the insertion probabilities 
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Figure 4. Effect of temperature on cavity formation at constant density; 
A[AM/i//cBn = [AMR/fcB71r-3«)K - [ W*B71r-3O0K f ° r T ' P 4 P *ater 
with density of 1.0 g/cm3. 

Figure 5. Comparison of approximate results of eqs 5 and 6 with nu
merical data for the TIP4P model at 300 K and 1.0 g/cm3: the nu
merical data are the middle (solid line) curve, eq 5 is the lower (-•-) 
curve, and eq 6 is the upper ( - - ) curve. 

e\p\-A[^ixR/ ksT]}. Those results indicate that the work of cavity 
formation increases as the temperature increases with the density 
constant. The temperature differences vanish for small cavities 
but begin to be appreciable for the largest cavities seen. Further 
work which investigates the effects of density variations should 
be pursued in order to interpret the temperature dependence of 
inert gas solubilities.'2 

The p(R) data (Figure 2) clearly indicate that the liquids 
studied fall into two categories. The results for the simulated 
organic liquids cluster into one group and the two water models 
constitute a second group. For the smaller sized cavities, the 
insertion probabilities are higher for the water models than for 
the simulated organic liquids. This means that less work is re
quired to create a cavity of small radius in water than in the 
organic liquids. In view of eq 5, this can be ascribed to the fact 
that the packing fraction for water at 1.0 g /cm 3 is smaller than 
the packing fractions appropriate to the simulated organic liquids. 

Since the results for sufficiently small cavities principally reflect 
the equation of state and not the detailed intermolecular structure, 
it is interesting to ask over what range of cavity sizes does that 
structure first become important. We have addressed this question 
in the case of TIP4P water by evaluating the approximate results 
of eqs 5 and 6 and comparing them with the numerical data. As 
with the numerical data, we took RH - 0.0 A and R0 = Rs = 
1.35 A. The comparison is shown in Figure 5. We conclude that 
the small-cavity approximation, eq 5, is accurate for ^? < 0.2 A 
and details of molecular structure are unimportant in that range. 
Inclusion of the last term of eq 6 extends the range of validity 
to R < 0.7 A. In this larger range the only aspect of molecular 
structure that influences the numerical data is the pair distribution 
of oxygen atoms. If the value 2 X 1.35 A is taken as a distance 
of closest approach for the solvent oxygen atoms, then triple 
overlaps can occur first at a solute radius of ( 2 / V 3 - 1)1.35 A 
w 0.2 A. This is smaller than 0.7 A. It would be natural to explain 
part of the difference by noting that the most compact solvent 
triples, those that form isosceles triangles of side 2 X 1.35 A, or 

Figure 6. Dimensionless cavity work as a function of cavity radius in 
seven simulated molecular liquids relative to the computed value for 
n-hexane at that radius: A[AnR/kBT] = &nR/kBT- [AM«/kBT]n.^X!iM. 

nearly so, are rather unlikely in liquid water. 
In view of the results shown by Figure 2 and solubility ex

periments, the curves describing the dimensionless cavity works 
&nR/kBT for the two different categories of liquids should cross 
as R increases. This is based on the expectation that the solubilities 
of atomic-sized, inert, rigid spheres should be lower in water than 
in typical organic liquids. The cavity work data shown in Figure 
3 agree with this idea. In these results, the curves for the model 
water liquids seem to be similar to each other in displaying stronger 
curvature than the results for the organic liquids. This distinction 
follows from the idea that the work of formation of cavities in 
water should exceed those for nonaqueous liquids when the cavities 
are sufficiently large—even though the cavity work for small 
cavities is lower in water than for the other cases. 

This curvature difference can be looked for more closely in 
Figure 6, which displays all the cavity works referenced to the 
value computed for n-hexane. More quantitatively, these cur
vatures were further analyzed by fitting the numerical data in 
the range 0.5 A < R < 1.5 A (the range shown in Figure 3) to 
a model form suggested by the asymptotic behavior of eq 9: 

4TT I 45 
AM* = y M 3 + 4Tr7X2Il - j (H) 

with X = (R + R5). The parameters of the fit are (p, y, 5, R$). 
The parameter ^?s is thus a single empirical length parameter for 
each liquid even for the organic liquids which involved exclusion 
spheres of several different sizes. Since the model depends non-
linerly on these parameters, the fitting was implemented in two 
steps. First the data were fit to a polynomial model 

^R/kBT= E CjRJ 
J-O 

(12) 

by a straightforward linear least-squares procedure. Expression 
of the coefficients Cj in terms of the model parameters shows that 
R5 must satisfy the cubic equation 

0 = E CJi-R5)J 
J=O 

(13) 

This can be solved analytically as the second step in the fitting 
procedure. Extraction of the remaining parameters from the Cj 
and ,R5 is then trivial. 

The fitted models obtained in this way always provided a very 
close description of the data and in all cases the cubic eq 13 was 
found to have exactly one real root. Those fitted forms support 
the hypothesis that the results for the water models can be dis
tinguished from those for the other liquids considered on the basis 
of the curvature: The fitted parameter p for the water results was 
significantly larger than that for the other cases and the curves 
for the water models are, therefore, more strongly cubic. However, 
the fitting of the macroscopic form eq 11 to the data for atom
ic-sized cavities is problematic. In particular, the numerical data 
show a gentle and monotonic variation that can be reasonably fit 
by a variety of functional models or, within one functional model, 

tl-lliwlt-l.il
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Figure 7. Two models fitted to the numerical data AnR/kBT for n-do-
decane. The data utilized for this fit are the same as those shown in 
Figure 4, which spans the radius range 0.5 A < R < 1.5 A. The lower 
curve (a) is the unconstrained fit of the model eq 11 to the data. The 
fitted parameters {p,y,S,Rs) are all found to have negative values and, 
in particular, p/kBT = -0.012 A"3. The upper curve (b) is the fit to the 
model eq 11 with the additional constraint that p/kBT = 0.03 A"3, an 
arbitrary, positive value of reasonable size. 

by a significant range of parameters. Therefore, the parameters 
produced by such a fit are not sharply defined by the data. In 
fact, the values found for the fitted parameters were unanticipated 
in several respects. In the first place, for the water models the 
parameter p was positive and the value of that parameter was 
higher than the known pressures of those liquids by factors between 
102 and 103. For each of the five simulated organic liquids, on 
the other hand, the fitted parameter p was negative and small in 
absolute value compared to the water cases. Because of the small 
size of p for the organic liquids, fitting of the data to a model with 
a constrained positive value of p, small in magnitude compared 
to the values found for the water models, produced nearly as 
satisfactory a description of the data as did the unconstrained 
model. Figure 7 illustrates the distinction between the uncon
strained and constrained fit to the data for n-dodecane. When 
the fitted value of p was negative, it was always found that the 
value of Rs was also negative because the cavity work data depict 
an increasing function of radius in the range of our observations. 

The comparison shown in Figure 7 between the cavity work 
data over a limited range of cavity sizes and models fitted to that 
data raises several points that can be addressed here. It might 
be queried whether it is reasonable to fit a model of macroscopic 
form to cavity works for cavities of such small size. Such a 
question should be resolved ultimately by just the type of com
parison shown in Figure 7. However, we can note the following 
facts: First, the scaled particle model being examined in this work 
assumes just such a fitting of a macroscopic form to results for 
point solutes (R — 0). Second, the two fitted models shown in 
Figure 7 might be further distinguished by utilizing data for a 
larger range of cavity sizes. These data for «-dodecane were not 
used earlier to avoid confusion from comparison of the results for 
different liquids over different ranges of cavity sizes. However, 
we have found that the qualitative aspects of the unconstrained 
fitting, including negative values of the parameter p, do not change 
when all of our data are used. In particular, the unconstrained 
fit—curve a of Figure 7—persists in providing a much more 
faithful description of our data even when results for substantially 
larger cavities are included in the comparison. Third, the ther
modynamic pressures predicted by the MCY model31 and, to a 
much lesser degree, the TIP4P model32 under the present con
ditions are higher than the experimental value for water under 
standard conditions. 

The values obtained for the parameter y were similarly 
unexpected: y was always assigned a negative value by the fitting 
described above. This is true even for the model water liquids 

(31) Owicki, J. C ; Scheraga, H. A. J. Am. Chem. Soc. 1977, 99, 7403. 
Impey, R. W.; Madden, P. A.; McDonald, I. R. MoI. Phys. 1982, 46, 513. 
Kataoka, Y. J. Chem. Phys. 1987, 87, 589. 

(32) Ferrario, M.; Tani, A. Chem. Phys. Lett. 1985, 121, 182. 

Figure 8. The probability density, -4p(R)/dR, that the maximum size 
sphere that could be implanted would have radius R, plotted over the 
restricted range (0.0, 1.5 A). 

where the fitted value of p was positive. Two facts are relevant 
to this observation. First, y is most straightforwardly considered 
as a surface free energy associated with a wall or boundary of 
constraint. If 7 is not interpreted as an interfacial tension then 
it is not required that 7 take only positive values. Second, the 
tension of the liquid-vapor interface of TIP4P water is higher than 
the experimental value for water.15 Therefore, even if the in
terpretation of 7 as an interfacial tension is insisted upon, the value 
assigned to 7 cannot be expected to be precisely the experimental 
value for the water liquid-vapor interface. 

Discussion 
The results above should be used as a signature with which to 

distinguish solvents that ought to behave quite differently as media 
for solvation of small inert molecules. One solvent property with 
a direct influence on solvation is the density. The density of liquid 
water near standard conditions is a manifestation of the char
acteristic hydrogen-bonded structure of the fluid. This is par
ticularly noticeable in the density increase with increasing tem
perature at constant pressure of the liquid just above the normal 
melting point. The fractional free volume will change in a non-
monotone fashion with temperature near 4 0C, the temperature 
of maximum density at atmospheric pressure. This structural 
aspect of hydrophobic solubility is faithfully incorporated into 
scaled particle models. 

Of the various quantities studied here, the conventional frac
tional free volume p(R = 0) reflects the solvent density most 
directly. Water near standard conditions has a greater fractional 
free volume than do the other solvents considered. However, 
because of the small size of the water molecule, that net fractional 
free volume is distributed in smaller packets in liquid water than 
in the other cases considered. Thus, the volume accessible to 
hard-sphere solute of substantial size is smaller in water than in 
simple hydrocarbon liquids. This is true despite the fact that the 
interstitial pockets in, for example, liquid n-hexane are not those 
characteristic of a fluid of hard spheres of radius 2.7-3.0 A. The 
interstitial cavities in a liquid such as n-hexane should be con
sidered on the length scale associated with the van der Waals 
radius of the methyl and methylene groups with radii of ap
proximately 1.85 A. 

The idea that the free volume might be distributed in smaller 
or larger units can be simply checked with the data above. In 
view of eq 10, -dp(R) can be interpreted as the probability that 
the largest sphere that could be implanted would have radius R.2i 

(33) If the solvent contains exclusion spheres of one type only, having 
radius Rs, then pm(R) can be identified with the probability density p„„(R) 
of the distance to the nearest neighbor from an arbitrary point in the liquid, 
according to the relation pm(R) = pm(R + Rs)- The normalization of this 
latter quantity, SaPm(R) d/J = 1, asserts that the distance to the nearest 
neighbor from any given point is surely within (0, <=). Since pm(R - Rs) = 
paD(R), this relation suggests that pm(R) should be defined for R ranging 
through negative values also. This is indeed rather natural, since, for many 
points of any particular configuration, a negative value of R would be required 
for a hard-sphere solute to be implanted. This interpretation therefore em
phasizes that Figure 8 shows only part of the full range of these normalized 
functions. 
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Figure 9. Comparison of the cavity work, AnR/kBT, predicted by the 
scaled particle model (ordinate) with the cavity work observed for the 
TIP4P water at 300 K and 1.0 g/cm3 (abscissa). 

As far as they have been investigated, these distribution functions 
are unimodal. We will adopt the terminology that the radius 
corresponding to the maximum of the probability densities is the 
"most probable value" for the radius of largest cavity that could 
be inserted. Figure 8 shows the distribution functions -dp{R) for 
three cases: TIP4P water at 300 K, n-hexane, and CCl4. The 
most probable values for the largest cavity that could be inserted 
lie between 0.2 and 0.4 A. However, the maximum is higher and 
the peak is slightly sharper for the water case than the others. 
This means, in the first place, that the most probable (small) 
cavities are more probable in water than in the other liquids. In 
the second place, these small cavities are somewhat more sharply 
defined in water than in the other liquids, particularly in view of 
the normalization of these distributions.33 These distinctions are 
the more striking because liquid water provides more free volume 
than do the other solvents, as evidenced by the p(R = 0) values. 
However, this point is consistent with preceding results such as 
those shown in Figure 6: Considering the comparison with the 
hydrocarbon liquids, small cavities, R « 1.0 A, are more easily 
inserted into water. But larger cavities, R » 1.0 A, are more easily 
inserted into the nonaqueous medium. 

The comparison of the frequency of occurrence of cavities of 
various sizes might be sharpened by considering a solvent of 
precisely the same fractional free volume p(R = 0) as water. A 
liquid composed of hard spheres of radius 1.35 A and of the same 
density provides such a solvent. Previous calculations indicate 
that the solubility of a hard sphere of radius 1.35 A is lower in 
water than in a solvent of the same density composed of hard 
spheres of the same size.34" On the basis of those results, we 
conclude that the hard-sphere solvent finds more ways to configure 
this free volume into packets of a sufficiently large size to ac
commodate the solute. This comparison suggests again that liquid 
water distributes its free volume in smaller packets than do natural 
reference solvents. In this case that difference reflects only 
structural differences between the two solvents. 

That comparison can be further strengthened and the role of 
solvent structure further clarified simply by comparing the pre
diction of the scaled particle model with the numerical data ob
tained here for liquid water. The reason for this is that the scaled 
particle theory was created to describe the hard-sphere fluid. The 
success of the scaled particle theory in that case is associated with 
a successful account of the structural properties of the hard-sphere 
solvent in so far as those structural properties influence solubilities 
and the equation of state. The primitive scaled particle model 
for solubilities of gases in liquid water is, therefore, most physically 
interpreted as predicting the cavity work for a solvent composed 
of hard spheres of the same size as the water molecule, which also 
happens to have the same density and equation of state as does 
liquid water. Thus the errors in the scaled particle model can be 
ascribed to the differences in the structural characteristics between 
the hard-sphere solvent and liquid water. 

The desired comparison of the predictions of the scaled particle 
model with the present data for TIP4P water at 300 K is given 
in Figure 9. That graph shows that the cavity work predicted 
by the scaled particle model is significantly below the numerical 

data for the larger cavities. A previous comparison34b'35 revealed 
that it is also lower than the predictions of more sophisticated 
theories for the same quantities. The difference shown in Figure 
9 is consistent with the expectation that the solubility of inert 
atomic solutes should be lower in water than that in a comparable 
simple liquid. This comparison, therefore, also suggests that the 
hard-sphere solvent finds more ways to configure this free volume 
into packets of sufficiently large size to accommodate the solute. 

Comparison with Previous Work 

The arguments above lead to the view that the differences shown 
in Figure 9 are just the type of differences that ought to be 
anticipated. However, those expectations appear to differ in several 
respects from conclusions that were drawn on the basis of an 
especially helpful previous study,30 which we will refer to as PBH. 
Here we discuss the differences between those calculations that 
must be considered in understanding the differences between the 
conclusions. 

The PBH study investigated the work of formation of soft-
sphere cavities in another model of liquid water, the SPC model. 
A soft-sphere cavity was described by an inverse- 12th-power 
repulsion between the cavity center and the oxygen nuclei of the 
solvent. Cavities of radius as large as 2.7 A, approximately, were 
considered. It was concluded that the scaled particle model was 
essentially exact for practical purposes. In this model it was 
assumed that p = 0. The value R0 = Rs = 1 -4375 A was used. 
The coefficient of the X2 term then implied a value of the pa
rameter 7, which differed by about 5% from the experimental 
value of the tension of the liquid-vapor interface of water at 305 
K. The maximum value of the radial oxygen density about the 
cavity center oscillated with increasing cavity radius. 

The most important difference between the PBH comparison 
and present work is associated with the value of R0. This pa
rameter is not involved in obtaining the numerical data for the 
soft-sphere cavities, and it plays the role of an adjustable parameter 
of the fit in the PBH comparison. PBH noted that the value used 
there, R0 = 1.4375 A, was significantly larger than the most 
popular values. For each configuration of the solvent, the frac
tional free volume p(R) will increase if R0 is decreased and, 
therefore, reduction of R0 will decrease the cavity work. Thus, 
the PBH results for the scaled particle model would change in 
the direction toward the present scaled particle results if R0 were 
to be decreased toward the value of 1.35 A required for our 
comparison. Explicit calculations show that the scaled particle 
results used by PBH will decrease by about 25%, for cavities with 
radii near R = 2.0 A. This ambiguity of comparison does not 
arise in the present work. Here hard cavities are intrinsic both 
to the numerical studies and to the scaled particle model results. 
In particular, a definite value of ./?0 is uniquely associated with 
each p(R) function obtained from the simulation data. 

An additional, but smaller, decrease in the appropriate scaled 
particle model results will arise from the soft character of the 
cavities studied by PBH. The cavity radius R utilized by PBH 
for their comparison would be considered the optimal, or WCA, 
radius if the density of the solvent were 0.36,37 The optimal radius 
is expected to be a decreasing function of solvent density. Thus, 
the most appropriate cavity radius at the solvent density of the 
calculation will be somewhat smaller than that used in PBH. It 
is reasonable to expect that this could be responsible for a further 
decrease of 2-4% in the scaled particle model results that provide 
the more appropriate comparison. Again, it must be emphasized 
that this ambiguity of comparison does not arise in the work 
reported here. 

This discussion suggests that, for cavity radii near R = 2.0 A, 
an accumulated reduction of 20-30% in the scaled particle results 

(34) Pratt, L. R.; Chandler, D. J. Chem. Phys. 1977, 67, 3683; (a) see the 
results of Section 1I.C. and Table I; (b) Figure 13 of this reference and the 
supporting discussion. 

(35) Pratt, L. R. Annu. Rev. Phys. Chem. 1985, 36, 433. 
(36) See, for example, ref 11, Section 6.3. 
(37) Chandler, D.; Weeks, J. D.; Andersen, H. C. Science 1983, 220, 787. 
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used by PBH is justified. This encourages us to suppose that a 
detailed analysis of the PBH data would support the same con
clusion that we have arrived at here: when identical quantities 
are compared, the scaled particle model will predict cavity works 
below the numerically exact results for liquid water. We expect 
the difference to be appreciable for cavities of atomic size and 
we argue that this difference should be interpreted as the influence 
of the differing structure of water and the hard-sphere liquid. 

This conclusion does not negate the potential practical utility 
of the comparison presented by PBH. That comparison showed 
that a simple empirical adjustment of R0 could compensate for 
the structural peculiarities of liquid water that are not directly 
built into the scaled particle model. In contrast, the objective of 
this work is to test and refine a recent hypothesis regarding the 
molecular mechanism leading to hydrophobic behavior of solu
bilities. 

In the process of checking the results obtained from approximate 
integral equation theories of aqueous solutions, Tanaka38 also 
produced data on the cavity insertion probability, p(R). The data 
presented in that study were neither characterized nor analyzed 
in sufficient detail for us to use them unambiguously. Therefore, 
the comparison of those data with the results and interpretations 
of the present study is not very conclusive. It appears that Ta-
naka's cavity data on liquid water are consistent with results of 
this work. It is, however, less clear how his data on Lennard-Jones 
liquid impact the present conclusions. 

We next consider the value of y quoted by PBH. The discussion 
above suggests that a significant range of values for y will still 
permit a reasonable modeling of the numerical data. In particular, 
although the value of the liquid-vapor interfacial tension for the 
SPC model is not known, an alternative value (the experimental 
thermodynamic tension of the liquid-vapor interface of water) 
can provide a reasonable description of the SPC data. A similar 
possibility has been verified explicitly for our data. We have fitted 
the scaled particle model (with p = 0) to our data by treating Rs 
as an adjustable parameter, R5, for a nonlinear least-squares 
treatment. This procedure produces reasonably faithful de
scriptions of the data although of lower quality than the more 
flexible fitting procedures discussed above. The value R5 obtained 
by this fitting is typically significantly larger than the value of 
1.35 A that is the solvent radius for these data. R5 took values 
between 1.38 and 1.40 A depending on whether the data for larger 
cavities were arbitrarily assigned an enhanced weight. If the 
smaller cavity data were preferentially weighted, Rs tended 
downwards toward the value of 1.35 A. This reflects the fact that 
the scaled particle model is correct for sufficiently small cavities. 
Conversely, if larger cavity data were given more significance, 
larger values of ks were produced. If these values were used in 
the scaled particle model for the y parameter, the value obtained 
for 7 is in the range of 60 to 64 dyn/cm, which is close to the 
value of the experimental tension to the liquid-vapor interface 
of water. However, in this case it is separately known that the 
surface tension of the TIP4P model of water is too high by ap
proximately a factor of 2.15 

The preceding discussion suggests that the cavities considered 
here and by PBH are quite submacroscopic. The PBH results 
also can be examined for direct aspects of macroscopic behavior, 
in particular, by studying the radial distribution of oxygen density 
about the cavity center. For that purpose, it is useful to recall 
the physical arguments that might justify the comparison of 7 
with the thermodynamic tension of the water liquid-vapor in
terface.2 Those arguments start from the expectation that liquid 
water should not wet a wall that exerts a simple repulsive force 
on the water molecules. When the cavity radius increases suf
ficiently, the cavity surface can be considered as locally planar. 
Provided that the pressure is not high, the liquid is then expected 
to pull away from such a cavity surface and the intervening space 
is expected to be filled at rather low density. That low-density 
material will be more similar to a vapor phase than to the liquid 

(38) Tanaka, H. J. Chem. Phys. 1987, 86, 1512. 

phase, which occupies regions far from the cavity surface. Then 
the qualitative behavior of the radial density of oxygen atoms is 
easy to imagine. It starts at a low value near the cavity surface 
and makes a smooth transition, reminiscent of an interfacial 
density profile, to a higher density at a molecularly large distance 
from the cavity surface. Molecular scale structural oscillations 
are likely to be confined to the region near the cavity surface and 
to be small in amplitude compared to the major density variations 
associated with the transition to the higher (liquid) value of the 
density. Then the parameter 7 describes the additional free energy 
associated with density inhomogeneities much like those en
countered within an interfacial density profile. This description 
is reasonable for thermodynamic states of low pressure, but a more 
general justification can be expected to be complicated. The PBH 
results for the radial distribution of oxygen atoms about the cavity 
are not at all similar to the macroscopic quantities depicted by 
this argument. Therefore, the PBH radial distribution results 
indicate that these cavities are decidedly submacroscopic as judged 
by examination of the oxygen density near the cavity surface. 

Conclusions 
Works of formation for spherical cavities of nearly atomic size 

are readily obtained from thermal configurational data on neat 
liquids. Those results for liquid water are easily distinguished 
from similar data for typical organic solvents. Liquid water has 
a larger fractional free volume than do the organic solvents, but 
that free volume is distributed in smaller packets. 

Compared with a solvent composed of hard spheres of the same 
size and of the same density, water is the less favorable solvent 
for inert atomic solutes. Therefore, even though the fractional 
free volume is the same and the sizes of typical interstitial holes 
are about the same, the hard-sphere liquid finds more ways to 
configure its free volume in order to accommodate an atomic solute 
of substantial size. This is an effect associated with structural 
differences between liquid water and the hard-sphere liquid and 
not merely a consequence of comparative differences in sizes or 
densities of the solvent molecules. 

This latter conclusion was supported by providing a physical 
interpretation for the scaled particle model and comparing the 
predictions of that model with the numerical data. Since hard 
cavities were studied consistently, that comparison does not suffer 
from ambiguities in identification of the appropriate cavity radii. 
The scaled particle model predicts cavity works below the nu
merical data for TIP4P water by about 20% at 300 K for cavity 
radii near R = 2.0 A. 

Use of the macroscopic form adopted for these cavity works 
by the scaled particle model together with the numerical data for 
radii R < 1.5 A in order to arrive at estimates of macroscopic 
thermodynamic parameters, such as the pressure, is likely to be 
incorrect even in the sign of the desired quantity. From this point 
of view these cavities are decidedly submacroscopic. Other results30 

suggest that for substantially larger cavities the cavity work should, 
with increasing cavity radius, display step-like oscillations of 
miniscule amplitude superimposed upon an increasing function. 
These oscillations also should be interpreted as structural effects 
associated with the molecular (or submacroscopic) scale of the 
cavities of interest in solubility calculations. 

Increasingly, there are indications that the prominence of 
characteristic hydrophobic behavior depends particularly on the 
size of the dissolved components considered.12'30,35 The crossover 
as a function of cavity radii observed here for the cavity works 
in water and nonaqueous solutions provides additional information 
on this issue. In addition, previous work has shown that the solvent 
hydrogen bonding patterns for water near a flat surface are 
different from those for water in the bulk liquid, or for water near 
inert gas solutes.2,,5a'39 It is, therefore, interesting and important 
to investigate the solvation of increasingly larger cavities with the 
objective of describing the switch to the hydrogen-bonding pattern 
characteristic of flat surfaces. The present calculations, however, 

(39) Lee, C. Y.; McCammon, J. A.; Rossky, P. J. J. Chem. Phys. 1984, 
80, 4448. 
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did not obtain work of formation results for cavities substantially 
larger than the solvent molecules, and that constitutes the chief 
limitation on the conclusions that are drawn here. Calculations 
of cavity works for much larger cavities will require alternative 
methods. 

It is now well-known that biological energy is channeled through 
the photosynthetic and mitochondrial respiratory chain via elec
tron-transfer reactions.1-5 This has stimulated a variety of studies, 
especially on fixed-site electron transfer in proteins, in an attempt 
to understand long-range electron-transfer reactions in biological 
systems. In recent years, mitochondrial cytochrome c has been 
one of the proteins most widely used as the study system,6 since 
it is well characterized in terms of both primary and tertiary 
structure and since X-ray crystallographic structures are available 
for a number of native cytochrome c systems, thereby facilitating 
model building.7 The approaches applied by a number of research 
groups to fix electron-transfer reaction centers at given distances 
in cytochrome c systems are either to covalently bond a donor 
and/or acceptor residue to specified sites on the cytochrome c 
surface8"14 or to rely on electrostatic self-association between 

(1) Chance, B., DeVault, D. C, Frauenfelder, H., Marcus, R. A., 
Schrieffer, J. R., Sutin, N., Eds. Tunneling in Biological Systems; Academic 
Press: New York, 1979. 

(2) Hatefi, Y. Annu. Rev. Biochem. 1985, 54, 1015. 
(3) Dixit, B. P. S. N.; Vanderkooi, J. M. Curr. Top. Bioenerg. 1984,13, 

159. 
(4) Michel-Beyerle, M. E., Ed. Antennas and Reaction Centers of Pho

to-Synthetic; Bacteria; Springer-Verlag: Berlin, 1985. 
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cytochrome c and its partner.15"22 

On the basis of these concepts, we decided to study cytochrome 
c, which has six cationic lysine residues at its surface near the 
solvent-exposed heme site, and as redox partner use uroporphyrin, 
which has eight carboxylate residues on short side chains disposed 
around the periphery. Our hypothesis was that this pair would 
form an electrostatic self-associated complex in aqueous solution 
that could perhaps be induced to undergo electron transfer when 
the porphyrin was excited into its triplet state. This resembles 
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Abstract: Photoinduced electron transfer between cytochrome c and free base and metallouroporphyrin (Up, MUp) has been 
studied. Difference absorption spectrophotometry showed that the electrostatic interactions between Up and cytc(III) result 
in their forming a self-associated 1:1 complex in the ground state with a binding constant that depends upon the ionic strength. 
In the complex, the photoexcited uroporphyrin singlet state was quenched through a static interaction with the protein. Even 
under the most favorable quenching conditions, i.e., when all porphyrin was complexed, residual fluorescence was noted. More 
significantly the excited singlet state of the complex was shown to undergo small, but significant, intersystem crossing. These 
triplet states rapidly underwent an electron-transfer process that yielded transiently the Fe(II) form of the protein. This is 
the first observation of such a process from a porphyrin/cytochrome self-association complex. Both the rates of bimolecular 
electron transfer between uncomplexed partners and intramolecular electron transfer from the uroporphyrin triplet to cytochrome 
c, as well as the thermal intramolecular back-reaction, have been measured by transient kinetic spectroscopy. The rate constants 
of intramolecular electron transfer for zinc uroporphyrin/cytochrome c and zinc cytochrome c/ferriuroporphyrin have been 
also determined. These three couples allow us to estimate approximately the reorganization energy X in the semiclassical 
electron-transfer theory. 
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